Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368
R. Gregory Peters, ${ }^{\text {a }}$ Misha V. Golynskiy ${ }^{\text {b }}$ and Russell G. Baughman ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, University of Memphis, Memphis, TN 38152, USA, and
${ }^{\mathbf{b}}$ Division of Science, Truman State University, Kirksville, MO 63501, USA

Correspondence e-mail:
baughman@truman.edu

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.035$
$w R$ factor $=0.087$
Data-to-parameter ratio $=12.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Tetracarbonylbis[(pentafluoroethyl)diphenylphosphine]chromium(0)

In the title complex, $\left[\mathrm{Cr}\left(\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~F}_{5} \mathrm{P}\right)_{2}(\mathrm{CO})_{4}\right]$, a slightly distorted octahedral geometry is present about the Cr atom which sits at a center of inversion, while the groups about the P atom are in a slightly distorted tetrahedral arrangement. The $\mathrm{Cr}-\mathrm{P}-\mathrm{C}$ angles are larger than the $\mathrm{C}-\mathrm{P}-\mathrm{C}$ angles of the ligand. The $-\mathrm{C}_{2} \mathrm{~F}_{5}$ groups are in the E configuration across the center of inversion.

Comment

Phosphine compounds with fluoroalkyl substituents are being prepared in an effort to develop phosphine-ligand systems that approximate the electronic influence of phosphites. The structure of the title compound, (I), was undertaken to establish the connectivity of the first of these substances.

(I)

The $\mathrm{Cr}-\mathrm{P}$ distance of 2.3368 (6) \AA is slightly longer than the metal-phosphorus distance $[2.252(1) \AA$ A] in trans$\left[(\mathrm{PhO})_{3} \mathrm{P}\right]_{2} \mathrm{Cr}(\mathrm{CO})_{4}$ (Preston et al., 1972). This is probably due to increased steric strain, as the phenyl groups are closer to the P atom in the title compound than are the phenyl groups in the phosphite. However, the $\mathrm{Cr}-\mathrm{C}$ bond distance in the title compound shows no similar elongation relative to the phosphite analog [average of 1.895 (4) \AA in the title compound versus an average of 1.88 (1) Å].

A slight distortion from octahedral geometry is present immediately around the Cr which sits at a center of inversion. The two axial P -containing ligands have $\mathrm{Cr}-\mathrm{P}$ vectors which are approximately perpendicular ($c f$. Table 1) to the essentially square planar arrangement [r.m.s. deviation of $\mathrm{Cr}(\mathrm{CO})_{4}$ of $0.013 \AA$ A see also Table 1] of the four carbonyls around the Cr atom. The phenyl and $-\mathrm{C}_{2} \mathrm{~F}_{5}$ groups are also disposed in the E configuration about the inversion centre. As expected, the carbonyl groups are nearly linear (Table 1).

The ligand geometry indicates that the rings and $\mathrm{C}_{2} \mathrm{~F}_{5}$ groups are staggered with respect to the four carbonyls (see torsion angles in Table 1). The P1-C15-C16-F4 grouping of atoms is in a planar zigzag conformation (r.m.s. deviation $=$ $0.043 \AA$). This is probably a result of the only significant, albeit weak, hydrogen bonding/dipole-dipole bond interaction, involving H 8 with F 2 , in which a six-membered ring ($\mathrm{P} 1-$ $\mathrm{C} 3-\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{~F} 2-\mathrm{C} 15$) is formed in a near half-chair conformation. C15 is $0.858 \AA$ from the mean plane of the P1-

Received 17 January 2002
Accepted 22 January 2002
Online 31 January 2002
$\mathrm{C} 3-\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{~F} 2$ atoms (r.m.s. deviation $=0.042 \AA$)
The $\mathrm{P} 1-\mathrm{C} 3$ and $\mathrm{P} 1-\mathrm{C} 9$ bonds are significantly (28σ) shorter than the $\mathrm{P} 1-\mathrm{C} 15$ bond. The average $\mathrm{P}-\mathrm{C}_{\text {ring }}$ bond length in the title compound is $\sim 10 \sigma$ longer than the average $\mathrm{P}-\mathrm{C}_{\text {ring }}$ length $[\sim 1.786$ (5) \AA] in the four organophosphorus compounds reported by Gifkins \& Jacobson (1980), Lapp \& Jacobson (1980), and Baker \& Baughman (1995). In these compounds, the P atom is doubly bonded to either an S or O atom, an -OMe or -OEt group, or a tri-halogen-substituted -OPh group. Thus, the elongation of the $\mathrm{P}-\mathrm{C}_{\text {ring }}$ bonds is likely to be a result of the inductive effects of the $-\mathrm{C}_{2} \mathrm{~F}_{5}$ group.

Experimental

The title compound was prepared by thermolysis of $\mathrm{Cr}(\mathrm{CO})_{6}$ with two equivalents of the ligand in refluxing octane. The solution was filtered, and removal of the alkane solvent under vacuum was followed by isolation of the product from a petroleum ether slurry at 195 K. Crystals were grown by slow evaporation of a $1: 1$ solution in a petroleum ether/ether mixture at room temperature.

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{Cr}\left(\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~F}_{5} \mathrm{P}\right)_{2}(\mathrm{CO})_{4}\right]} \\
& M_{r}=772.44 \\
& \text { Triclinic, } P \overline{1} \\
& a=8.1720(3) \AA \\
& b=9.3069(4) \AA \\
& c=11.8450(5) \AA \\
& \alpha=110.015(4)^{\circ} \\
& \beta=93.301(4)^{\circ} \\
& \gamma=102.208(3)^{\circ} \\
& V=819.00(6) \AA^{3}
\end{aligned}
$$

$$
\begin{aligned}
& Z=1 \\
& D_{x}=1.566 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 100 \\
& \text { reflections } \\
& \theta=10.5-18.1^{\circ} \\
& \mu=0.54 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Trapezoidal plate, pale yellow } \\
& 0.31 \times 0.25 \times 0.19 \mathrm{~mm}
\end{aligned}
$$

Data collection
Siemens Bruker $P 4$ diffractometer $\theta / 2 \theta$ scans
Absorption correction: by integration (XSCANS; Bruker, 1996)
$T_{\text {min }}=0.873, T_{\text {max }}=0.924$
3507 measured reflections
2847 independent reflections
2366 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.017 \\
& \theta_{\max }=25.0^{\circ} \\
& h=-9 \rightarrow 1 \\
& k=-10 \rightarrow 10 \\
& l=-14 \rightarrow 14 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 100 \text { reflections } \\
& \quad \text { intensity decay: average of } 1.4 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.087$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0408 P)^{2}\right.$
$+0.4223 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$S=1.08$
2842 reflections
223 parameters
H -atom parameters constrained

Figure 1
View of the title molecule, showing the labeling of the non-H atoms. Displacement ellipsoids are shown at the 50% probability level.

Table 2
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{~F} 2$	0.96	2.38	$3.111(4)$	133

The $\mathrm{C}-\mathrm{H}$ bond lengths were constrained at $0.90 \AA$.
Data collection: XSCANS (Bruker, 1996); cell refinement: $X S C A N S$; data reduction: XSCANS; program(s) used to solve structure: SHELXS86 (Sheldrick, 1990a); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: SHELXTL/PC (Sheldrick, 1990b); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 1990b) and SHELXL93.

This work was supported in part by a grant from the University of Memphis Faculty Research Grant Fund. This support does not necessarily imply endorsement of research conclusions by the University. MVG was supported by a Research Experience for Undergraduates grant from the National Science Foundation (CHE\#9987775).

References

Baker, S. M. \& Baughman, R. G. (1995). J. Agric. Food Chem. 43 (2), 503-506. Bruker (1996). XSCANS. Version 2.21. Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Gifkins, M. R. \& Jacobson, R. A. (1980). Cryst. Struct. Commun. 9, 571-574.
Lapp, R. L. \& Jacobson, R. A. (1980). Cryst. Struct. Commun. 9, 65-69.
Preston, H. S., Stewart, J. M., Plastas, H. J. \& Grim, S. O. (1972). Inorg. Chem. 11, 161-165.
Sheldrick, G. M. (1990a). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1990b). SHELXTL/PC. Version 4.1. Siemens Analytical
X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXL93. University of Göttingen, Germany.

